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Abstract

In- this paper, -we considersthe linear quadratic optimal control

4, problem on infinite time interval for linear time-invariant systems defined on

Hilbert spaces. The optimal control is given by a feedback form in terms of

solution r1 to the associated algebraic Riccati equation (ARE). A Ritz type

approximation is used to obtain a sequence rl of finite dimensional

approximations of the solution to ARE. A sufficient condition that shows liN

converges strongly to I is obtained. Under this condition, we derive a

formula which can be used to obtain a rate of convergence of 0" to n.

We demonstrate and apply the results for the Galerkin approximation for

parabolic systems and the averaging approximation for hereditary differential

systems.
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I. Introduction

Assume Z, U and Y are Hilbert spaces. Consider the evolution

equation on Z

(1.1) z(t) = A z(t) + B u(t), z() =z o e Z

where u(t) is " alued control function, A is the infinitesimal generator of

strongly continur emigroup S(t) on Z, and B E f(U,Z). The Y-valued

observation function y is given by

(1.2) y(t) = C z(t) , t ; 0

We assume that C E Z(Z,Y). We interpret the equation (1.1) in the mild sense;

. ,- the solution of (1.1) is given by

Jt
(1.3) z(t) = S(t)z o  + S(t-s)B u(s)ds

* 0

Consider the minimization problem; minimize the cost functional

2 ( IlYt) 112
(1.4) J(uzo) llu(t) 2)dt

subject to (1.3). Then the following result is well-known [10],[11]:

Theorem 1.1 Assume (A.B) is stabilizable and (AC) is detectable. Then

there exists a unique nonnegative self-adjoint solution 11 to the algebraic

Riccati equation in Z:

(1.5) (Afl + rlA - rIBBFI + C*C)z = 0 for all z E dom(A)

1 . and the optimal solution u°  to (1.4) is given by

u°(t) = -B*n T(t)z o

where T(t) is the strongly continuous semigroup generated by A BB*rl

and it is uniformly exponentially stable.

04.7
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Here we have

Definition 1.2 (i) (A,B) is stabilizable if there exists an operator

K e 9(Z,U) such that A-BK generates a uniformly exponentially stable
* .

semigroup on Z.

(2) (A.C) is detectable if there exists an operator G - Z(Y,Z) such that A - GC

generates a uniformly exponentially stable semigroup.

-. ".-

The purpose here is to construct a finite dimensional approximation

of the optimal feedback gain operator B~rL Let us consider a sequence of

approximating problems (ZN,ANBNCN); let ZN be a sequence of finite

dimensional subspaces of Z and pN be the orthogonal projection of Z onto

ZN. Assume AN : ZN -.ZN , BN : U _ ZN and CN : ZN - Y are continuous.

Then consider the Nth approximating problem of (1.4)

(1.6) minimize JN(uzo) = (ICNzN(t)ll + I1u(t)112)dt
n0

subject to

(1.7) zN(t) = sN(t)pNz 0 + sN(t-s)BNu(s)ds
-1 0

where SN(t) - eA t , t ) 0. Then the optimal control uN of (1.6) is given

by
-BN- N. N NN)t pNz 0

uN(t) = -BN*fNe(A BB h ' 0 , t ) 0

where N :• ZN _ ZN is self-adjoint and satisfies the Nth approximating

algebraic Riccati equation in ZN;

(1.8) AN*IN + nNAN - rlNBNBN*nlN + CN*CN = 0

Here, BN*r N N ) I yields a sequence of finite dimensional approximations of

*.5, ',
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the optimal feedback gain [3].

In this paper we first obtain a condition on (ZN,AN,BNCN) for which

(1.8) admits a unique nonnegative solution 'N, and INpN converges strongly to n

in §2. Such a condition has been discussed in [2], [3] but the condition in this

paper improves those in [2], [3], i.e., we introduce the uniform detectability

condition (see, (H3) in 52, for the definition) which is additional to those

considered in [21, and using this condition, we are able to show that there

exists an integer No such that for N ) NO

pIe(A',NBN*nN)tPNII - M e-w t , t ) 0

for positive constants M ) l and w (independent of N ) NO). This assertion

is a part of assumptions in [2, Theorem 2.2]. The uniform detectability

condition is satisfied if C*C is coercive, which is assumed in the discussions in

[2,p. 693]. Thus, the uniform detectability condition can be regarded as a

relaxation of the coercivity assumption mentioned above. Next, under the

condition in §2 we derive a formula which provides a rate of convergence of

SlN to n and apply the formula for specific examples.

"p
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2. Uniform Stability and Strong Convergence

We assume the following. Let SN(t) = eA Nt, t 0 0

(HI) For each z e Z, we have

(i) SN(t)PNz -. S(t)z , and

(ii) SN(t)*PNz - S*(t)z ,

where the convergences are uniform in t on bounded subsets of [0,-).

(H2) (i) For each u C U, BNu Bu and for each z E Z

BN*pNz - B*z.

(ii) For each z ( Z, CNpNz Cz and for each y e Y

CN*y - C'y.

(H3) (i) The family of the pairs (AN,BN) is uniformly stabilizable: i.e.

there exists a sequence of operators KN C Z(ZN,U) such that

, supllKN11 < - and

Ile(ANBNKN)tPNII ( Mle-it~ , t ) 0

for some positive constants M1 ) I and wi

(ii) The family of the pairs (AN,CN) is uniformly detectable; i.e.

there exists a sequence of operators GN C r(Y,ZN) such that

supIGNI, < _ and

i e~~~(AN-GC~p t~
IIe(A-" , II ( M2e , t ) 0

for some positive constants M2 ) I and w2.

Remark (I) Suppose BN N PNB and CN . PN. Then (H2) holds

since it follows from (HI) that pNz z for all z e Z.

(2) The assumption (H3) is closely related to the preservation of

exponential stability under approximation in [3,Conjecture 7.1] and it is shown

in [21 that (H3) (i) ((POES) in [2]) is satisfied for parabolic systems using the

V%
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Galerkin approximation.

4: (3) A natural way to argue (H3) is to take KN = KPN and GN pNG for

some K c r(Z,U) and G i f(Y,Z) such that A - BK and A - GC generate

uniformly exponentially stable semigroups on Z.

. Theorem 2.1 Suppose (HI)-(H3) are satisfied. Then for each N, (1.8)

admits a unique nonnegative solution nN, suplln Nl < *, and there exist

positive constants M3 ) I and w3 (independent of N) such that

IIle(AN-BNBN*nN)tPNII ( Msew 3 t , t ) 0

% % Proof: The proof is based on the arguments in [il]. The existence and

uniqueness of solutions to (1.8) follow from Theorem 1.1. Since

<n'NpNzz> = min JN(uz), (H3) (i) implies that

, ..-.. <I'NpNz,z > 4; JN(-KNzN(.);z)

J(IjC A Ne(' BNKN)tpNz 2 + 1 KNe(A N-BK) tNz)t

-- BIIz1 for some positive constant 0

Since lN is self-adjoint, nonnegative definite, this implies that IlnN1l I,.

By the variation of constants formula
pt

(2.1) e(AN-BNBN inN)t- TN(t) + J TN(t-s)(GNCN-BNBN*lN)e(A-B fl)s ds

where TN(t) = e(AN 'GNCN)t, t ) 0. Here, from (1.8)

(AN-BNBN*IN)*nN + InIN(A N-BNBN*fN) + nNBNBN*n N + CN*C N =0

so that if zN(t) =e( AN -B N B Nrp)tpNz, t ) 0, then

,.
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d <z.N(t),rlNzN(t) > + JIBNnNzN(t)112 + ilcNzN(t) 112 0

Thus, for all t ) 0

(2.2) <nNZN(t),ZN(t) + (IIBN*nNzN(t)112 + I CNzN(t)112)dt

B <NpNzz> OIIZt)2

Now, from (2.1), we have for all t ) 0

zN(s) 112d M 2M (21GN 112 + iBN 112) N NZN(S) 2

J t2 0

+ IICNzN(s) 11
2)ds

where we have used the Young's inequality. From (2.2), we have

I IzN(t)112 dt ( ' - (W 2  + 23 sup(IGN1I2  + JIBN 11
2))lZ1 11

2

0 2

for all z E Z. Therefore, the theorem follows from the Datko's theorem [7].

(Q.E.D.)

The following is a consequence of [3, Theorem 6.9] and [2, Theorem

2.21.

Corollary 2.2 Suppose (A.B) is stabilizable and (AC) is detectable and

assume (HI) - (H3) are satisfied. Then the unique nonnegative solution flN

to (1.8) converges strongly to n1, the unique solution to (1.5).

Theorem 2.3 Suppose that B is compact and BN - PNB and that

(HI)(i) and (H3)(i) are satisfied. Then (A.8) is stabilizable.

Proof: Let us consider the case C = I and CN = pN with Y - Z. Then it is

easy to show that (A,C) is detectable and (AN,CN), N ) I are uniformly

detectable since (HI)(i) implies that for some M ) I and w independent of N,
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,,%IsN(t)pNj < Me , t 0. It then follows from Theorem 1.1 and (H3)(i) that for

each N, (1.8) with CN = pN has a unique solution 11N.  Using the same

argument as in the proof of Theorem 2.1, we have Ajfi ] 0 for some positive

constant 0. Thus, by Theorem 6.5 in [3], there exists a subsequence of 1N

converges weakly to some nonnegative, self-adjoint operator I We will show

that fl satisfies (1.5) with C = I. Since pNfN n B1 , n,
-" N.* Nj~

B*pNfIN = B*rFiN. Since B* is compact, for each z E Z, B i r jpNZ converges

strongly to B*fz. It now follows from [3, Theorem 6.7] that n satisfies (1.5)

But since (A.C) is detectable, by [10, Theorem 3.2], A - BB*I generates a

uniformly exponentially stable semigroup on Z.

(Q.E.D.)

* Remark 2.4 Roughly speaking, Theorem 2.3 means that the uniform

stabilizability implies the stabilizability of (AB). The dual statement of

Theorem 2.3 also holds: i.e., suppose C is compact, CN = CPN, then (HI)(ii)

and (H3)(ii) imply that (AC) is detectable. This statement can be proved by

applying the exactly same arguments as in the proof of Theorem 2.3 to the

dual Riccati equation

(AE + A* - C*CE + I) z = 0

A for all z E dom(A*).

-,-

24 %
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3. Convereence Rate

In this section, we assume that (HI) and (H3) are satisfied and let

BN = pNB and CN = CPN. Moreover, we assume

(H4) For each z i Z, rliz E dom(A*) and B is compact.

From (1.5), we have for all z c dom(A)

2<rlz,Az> - <B*rlz,B*lz> + (Cz,Cz> = 0

Thus, (H4) and the density of dom(A) in Z imply that for all z c Z

2(A*rlz,z> - <B*giz,B*rlz> + (Cz,Cz> = 0 .

Define the self-adjoint operator fjN = pNgpN. Then for all x £ ZN

(3.1) 2<AN*rINx,x > - <B*nlNx, B*Nx >+ <CNx,CNx> + (ANx,x = 0,

where A N E r(ZN) is a self-adjoint operator defined by

(3.2) (ANxx>-- 2((A* - AN*pN)lx,x>

+ (B*(N -gN)xB*(rjN + giN)x for all x E ZN

From (1.8), for x E ZN

(3.3) 2(AN*nNx,x > - <BN*nNX,BN*nNx > + (CNx,CNx> 0

Hence by subtracting (3.1) from (3.3)

2<(AN - B B niN, (fn - n~

+ (N(BjN N x B N(nN fN)x> - <9Nx,x> - 0

for all x E ZN. Or equivalently

"'"N " (A -NBN B n Nt( ( gn B (n
(3.4) nN -N = N)BNBN(nN -yN) AN)

e(AN-BNBN n)t dt

if''
B

.. '., *
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Similarly, subtracting (3.3) from (3.1), we obtain

(3.5) jn - ~n ,JeD(A -B B n l~((nN - ~NNn )B fiN) + N

0

x C(4- e( N B N* fiN)tdt

Here, from Theorem 2.1, we have

Ile 1 (ANBN B NfN)t pl( 3Wtt ) 0

with M3 ) I and w3 > 0. Since n NpN Iistrongly by Corollary 2.2 and

B is compact

1JBN*(rlN _ fiN)jl 11(rIN _ rDpNBlj 0 as N

Hence by the variation of constants formula and the Gronwall's lemma,

~1 (ANBN BNrlN)t pN (-s J IB 11 1BN*(flNfl ) II)t

It then follows that there exists an integer No such that if N N N0,

-4.-. Ile(ABBR~ N 11 4 M 3e t )1 Q

Now, from (3.4) for all X E ZN

(3.6) (fN fj)I> 1 N~n .fn )e(A.B ~x 1  dt

0

-- J' <e(A N BNBNnN)tx, &NeC(A N-B NBNnN)tx >dt
0

and from (3.5)

(3.7) <(flN -Nx) J1 8N~nN A jN )(A B B nN~x 1 d

<C ((AN -B NB NfN)t, ANC(A BB N1)tX~dt
0

These inequalities imply that for x ZN

I4 

4.e 

*.



2
(3.8) (fN _ fiNxx , 2M3 NINI

S

where from (3.2)

(3.9) ,A, 211(A AN~pN)1 1 1 + 20lIBBIl1(B*B )lh for all N )No.
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4. Examples

In this section we discuss the examples in which (Hl)-(H4) arc

satisfied and then apply the formula (3.8) and (3.9) to obtain a convergence

rate of nN to M

4.1 Parabolic Systems

Assume V and H are Hilbert spaces and V c H with

continuous dense injection i. Consider a bilinear form a on V such that

(4.1) i O(u,v)l I cilull 1Iv4 for u,v e V

(4.2) o(u,u) ?W1ui 2 .p1ju1J2 for u e V
.,--.m II I V  II I H

where w, > 0. It then follows from [9] that there exists an operator A E

f(V,V*) such that

(4.3) o(u,v) = <-Au,v). for u,v c V

,*,

, where V C H = H* C V* and H being the pivoting space, and that A

on H with

(4.4) dom(A) = (x e H : Ax e H) dense in V,

generates the analytic semigroup on H and V*. For given B e X(U,H) and

C e *(H,V) consider approximating problems (ZN,AN,BN,CN); i.e. let ZN be a

sequence of finite dimensional subspace of V and AN: ZN _ ZN is defined by

4' (4.5) (-ANz, x> > O(z,x) for z,x C ZN

Let pN be the orthogonal projection of H onto ZN and assume BN =

pNB and CN = CpN. We assume the approximation condition:

'p
'p
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For each z e V there exists an element zN E ZN

(4.6) such that 1iz- ZN11  E (N) where E(N) 0 as N
V

It then follows from [21 that (HI) holds and if (A.B) is stabilizable and (A.C) is

detectable, then (H3) holds. Thus from Corollary 2.2, rlN converges strongly to

-A. rt However one cannot apply the formula (3.8)-(3.9) as it is, since

r1Z C dom(A*) is the maximal regularity without assuming any regularity of C.

This can be demonstrated by the following example. Consider the case when

L2(0,1) and V = H0 (0,l), and

d d

o(uv) = -, u(x) -v(x)dx for u,v c HO'
odx x

Let us consider the Liapunov equation on H

(4.7) AE + LA + Q 0

where Q is self-adjoint operator on H. If for each z E Z,

(Ez)(x) - f (x,y)z(y)dy and (Qz)(x) ; q(x,y)z(y)dy,
o o

then 0 satisfies AO + q = 0 with Dirichlet boundary condition,

82 a2

where AO= - 0 + - * fo- 0 c H2([,1] x [0,11). In general (e.g., see
ax 2  8y 2

[61,[8])

a2J 1 + a2 012 dxdy 4 M JIq 2 dxdy
o f. Lio I 8y2  00

,-. This implies EL2 C dom(A) is the maximal regularity.

A" Hence we will modify the arguments in Section 3 to improve the

formula (3.8)-(3.9) for this example. First we note that in (3.2) for x £ ZN
I <(A**A ,P)nx,x>l I  o(x,CfiN -n)x) I

cIlxlI(ln fiN)xil v  by (4.1)

I.r04

q * - 4 ' '-. ' i
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Thus from (3.2)

(4.8) 7 - SU 2 c su -1i(f-fl'")X liv
lix Ii V o lix lif XflNlx 11iv

+ 2aI3IIBII sup

where lXIH 4 (x"i.

Lemma 4.1 There exists a positive constant M such that

IeAN-NBN n NNtpN 2 2J 11i(AV~ofitp~ dt ( MlIII and

I li(AN-BNB NfN)t pN) 11 
2 dt Mll2~

Proof: Let t (t) eABBfN~ ~ 0. Then Nt)satisfies

d z ~t (AN -B N B NfN)CN(t) ,t 0

so that from (4.5)

I ~ Ng 2  
0(N~tN) <B- t N~t Nn tN )>

-I --ait 11"t'IH + HB*Nt)B1

and from (4.2)

I t c I N~t1
2  + WlitN t12 4 p + 2012

cT ~ 'H V tJ,,~(p+2;~J IIH

The integration of this inequality with respect to t yields

N 2 rt 2N. 1 f
T li (t)IIH + ' J0  JO H ~()~+(p+ 2 lB

Now the lemma follows from Theorem 2.1.

Q.E.D.

O&
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It then follows from Lemma 4.1 and (4.8) that

f 00 e(AN-BNB
N *n N)tx , e(ANBNBNnN)t>

-- ( AN.B bNDN pN X 2

imiary for eN-BNB , t ) 0. Therefore we obtain, using (3.6) and

;,,. % (3.7),

(4.9) ln  fn 1  M .

where y is given by (4.8).

Consider the (I-dimensional) parabolic control system f2];

aa a a1
z(tx) (p(x) F z) + q(x) F z + r(x)z

+ E bi(x)ui(t) in (0.1)
' i=1

with boundary condition z(t,0) - z(t,l) - 0, where p e C 1 (0,l), being bounded

d
below by a positive constant w, T- q, r e L (0,I), and bi E L2(0,1), i = 1.m.

In this case, H = L2 (0,1) and V - H1(0,1), and the bilinear form o is

given by

,,p,.d d d
o(uv) = [p(x) -u -v - (q(x) -u + r(x)u)v]dx

d x dx Tx

B: n -. L2(0,1) is defined by

4M

(Bu)(x) - E bi(x)u i for u e :n

and dom(A) = dom(A*) = H2(0,1) () H(0,1). Let us consider the following

finite dimensional subspace ZN of V:

N-I
ZN = (z E H: z(x) -E u Be(x) , C 5 )~i--I

c H9.

OP
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where B ., i I...,N-1 are the linear B-spline elements on the interval [0,1];
"p ii.

-N(x- ) x (

BN = N(x- X) E ( L

0 N elsewhere

Then the approximation condition (4.6) is satisfied [8]. Suppose (A.B) is

stabilizable and (A.C) is detectable. Then (1.5) has the unique solution n

and using a similar arguments to those given above to show the regularity of

solutions to Liapanov equation (4.7), one can show that for x ( H, nx E

dom(A*). Since A* is closed in H and dom(A*) C V, by the closed graph

theorem, there exists a positive constant k,' such that Jilz H2 (0,) k 111Z11 2(,)

Hence the fundamental error estimate (e.g., [8]) gives

rz _iNZL2 k 21111,k3 2

-p. k fjN III I L 12

for some positive constants k2 ,k.. Now it follows from (4.8) and (4.9) that

1n N - 1 1j k L ] for some constant k.

4.2 Hereditary Differential Systems

Consider the hereditary differential system in E0;

X(t) A't) + A A(e)x(t+e)de + Bu(t)

(4.10) x(0) -Yn and x(9) 0 (0), -r 4 8 < 0m

y(t) = C x(t)
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and the optimal control problem; for given initial data z = (r,0) E x

L 2(-r,O, W) , minimize the cost functional

(4.11) J(u,z) = ( I y(t)2 + Iu(t) )dt

Here, x P, u . Pm and y I i, ' and the element of A(-) is square

integrable. It is shown [1 that (4.10) and (4.11) are equivalently formulated as

the problem (1.1) - (1.4) on the product space Z -I P x L2(-r,0;W); i.e., z(t)

(x(t),x(t+.)) E Z is the mild solution of (1.1) with

dom(A) E(('¢) E Z : E c Hl(-r,0) and 0(0) = 27)

for (0(0),0) E dom(A)

A(€O),O) -= (Ao4(0) + A1 0(-r) + r A(e)0(e)de, 0)

The input operator B : Im - Z and the output operator C . Z -P are

"-,' given by

Bu - (Bu,0) c Z and C(7,O) = Cr?

Let us consider the averaging approximation [1] of (4.10); let

N
ZN= (Z Z :z= (a, E akX i ) ak E R n , 0 (k N) C Z,

k=l [- - r,- - r)

N N

and AN has the matrix representation (QN)1HN on n(N+l) when ZN is

identified with p(N+l) by its coordinate vector col(a o ,...,aT), where the block

S. diagonal matrix QN and the block Hessenberg matrix H N  are given by

A ANNr AN
- o I- N

01 1 N1

".-I

QN I N and HN A I I

r J -.
-1
N



-17-

i-I N-I

with AN = A o , AN= N A A (e)de and AN = + N A(e)de. Note that
--- r -r"

N
pNB B and CPN = C. Set BN B and CN = C. Then (AN) * has the

matrix representation (QN)-lHN T  on pn(N+l) (Hl)(i) is proved in [11 and

(Hl)(ii) is proved in [3]. Using the arguments in [5], [7] one can show that

(H3) is satisfied (i.e., (i) is straightforward but (ii) is not so). Thus, the

formu,a (3.8)-(3.9) yields

1117N _ fiNi I 211(A* - AN*PN)nll

By the regularity result in [4], if A(-) c Hl(-r,O;R'l), then

A*rl + C*C E dom(A*)

where dom(A*)= c(y,P) 6 Z E 6 H' and 4(-r) = ATy} and A*(y,p) =

(VO) + ATy, ' _(e) + AT(.)y) E Z [3]. Since C*C(r7,4) (CTCr?,O) 6 Z for

(MO%) e Z, this implies that if lz = (y,O,), then 0 c H1 so that E H2 , and

since A* is closed, 1111H ( Mjjzjlz for some constant A. It then follows

from the arguments and error estimate in [1], [3] that

II(A*-AN*PN)n(y, I 4-({y{ + f1ai1H=)

Hence we obtain jln f1N- -
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